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An audio-visual corpus has been collected to support the use of common material in speech
perception and automatic speech recognition studies. The corpus consists of high-quality audio and
video recordings of 1000 sentences spoken by each of 34 talkers. Sentences are simple, syntactically
identical phrases such as “place green at B 4 now.” Intelligibility tests using the audio signals
suggest that the material is easily identifiable in quiet and low levels of stationary noise. The
annotated corpus is available on the web for research use. © 2006 Acoustical Society of America.
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I. INTRODUCTION

Understanding how humans process and interpret speech
in adverse conditions is a major scientific challenge. Two
distinct methods for modeling speech perception have been
studied. The traditional approach has been to construct “mac-
roscopic” models, which predict overall speech intelligibility
in conditions of masking and reverberation. Models such as
the articulation index �French and Steinberg, 1947�, the
speech transmission index �Steeneken and Houtgast, 1980�,
and the speech intelligibility index �ANSI S3.5, 1997� fall
into this category. A more recent idea is to apply automatic
speech recognition �ASR� technology to construct what
might be called “microscopic” models of speech perception,
which differ from macroscopic approaches in their additional
capability to predict listeners’ responses to individual tokens.
Examples of microscopic models include Ghitza �1993�,
Ainsworth and Meyer �1994�, Holube and Kollmeier �1996�,
and Cooke �2006�.

Although microscopic modeling results have been prom-
ising, a serious barrier to further development of these mod-
els has been the lack of suitable speech material. Unlike
speech perception studies, microscopic models require a
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large volume of speech material for training purposes. Many
corpora for ASR exist, but the use of such corpora in speech
perception testing is problematic. Speech material tends to be
uncontrolled, phonetically unbalanced, or consists of tokens
whose durations make them unsuitable for behavioral stud-
ies. By contrast, corpora used in perceptual studies tend to be
too small or insufficiently varied for microscopic models of
speech perception.

Previous models have attempted to explain the auditory
perception of speech signals. However, speech production
results in both acoustic and optical signals. It has become
increasingly clear that the visual modality has a fundamental
role in speech perception, and any full perceptual account
needs to explain the complicated interactions between mo-
dalities �Rosenblum, 2002�. Acoustically confusable pho-
neme pairs such as /m/ and /n/ can be disambiguated using
visual cues. Automatic speech recognition systems can ex-
ploit these cues to improve audio-only recognition perfor-
mance in both clean and noisy conditions �Potamianos et al.,
2003�. Visual cues can also be used to separate speech from
competing noise sources. One particularly interesting area of
study in this respect is the audio-visual separation of simul-
taneous cochannel speech. Despite the clear importance of

visual speech information, until now there have been no eas-
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ily accessible corpora suitable for building multimodal mod-
els. However, recent advances in video compression technol-
ogy, the rapidly falling cost of hard disk storage, the
increasing capacity of optical storage media, and the increas-
ing bandwidth of typical Internet connections, mean that
storage and distribution are no longer a barrier.

These factors motivated the collection of an audio-visual
corpus designed for both ASR-based and perceptual studies
of speech processing. The form of the corpus was heavily
influenced by the coordinate response measure �CRM� task
�Moore, 1981; Bolia et al., 2000�, which consists of simple
sentences of the form “READY �call sign� GO TO
�color� �digit� NOW.” CRM used 8 call signs, 4 colors,
and 8 digits and each combination was spoken once by 8
talkers for a total of 2048 sentences. CRM is useful for stud-
ies of early processes in speech perception since it contains
sentence length material, yet is devoid of high-level linguis-
tic cues. The design of CRM makes it valuable in multitalker
tasks �e.g., Brungart et al., 2001� where listeners are asked to
identify the color-digit combination spoken by the talker who
provided a given call sign.

The new collection, which we call the Grid corpus, con-
sists of sentences such as “place blue at F 9 now” of the form
�command:4� �color:4� �preposition:4� �letter:25
� �digit :10� �adverb:4�,” where the number of choices
for each component is indicated. Grid extends CRM in a
number of ways. The set of talkers is larger �34 rather than 8�
and the number of sentences per talker is 1000 rather than
256, giving a total corpus size of 34 000 as opposed to 2048
sentences. Consequently, Grid contains greater variety and is
large enough to meet the training requirements of ASR sys-
tems. Grid has an improved phonetic balance due to the use
of alphabetic letters, which also presents listeners with a
more difficult task than the four color options of CRM. Grid
is more varied than CRM since the “filler” items �command,
preposition, and adverb� are no longer static. This also pre-
vents echo-like artifacts arising when two or more sentences
with identical fillers are summed in, for example, experi-
ments involving multiple simultaneous talkers. Finally, Grid
provides speech video as well as audio, allowing the devel-
opment of multimodal perceptual models.

While the primary motivation for the Grid corpus was to
support the construction of microscopic, multimodal models
of speech perception, it can also be used for conventional
behavioral studies of audio and audio-visual speech percep-
tion. Similarly, Grid is valuable for ASR studies of speech in
noise, the separation of speech from multitalker back-
grounds, and audio-visual speech recognition and separation.

II. CORPUS

A. Sentence design

Each sentence consisted of a six word sequence of the
form indicated in Table I. Of the six components, three—
color, letter, and digit—were designated as “keywords”. In
the letter position, “w” was excluded since it is the only
multisyllabic English alphabetic letter. “Zero” was used
rather than “oh” or “nought” to avoid multiple pronunciation
alternatives for orthographic “0.” Each talker produced all

combinations of the three keywords, leading to a total of
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1000 sentences per talker. The remaining components—
command, preposition, and adverb—were “fillers.” Four al-
ternatives were available in each filler position. Filler words
were chosen to create some variation in contexts for the
neighboring key words. Different gross phonetic classes �na-
sal, vowel, fricative, plosive, liquid� were used as the initial
or final sounds of filler words in each position.

B. Speaker population

The aim of speaker selection was to provide a suffi-
ciently large number of speakers to allow users of the corpus
to select subsets based on criteria such as intelligibility, ho-
mogeneity, and variety. Sixteen female and 18 male talkers
contributed to the corpus. Participants were staff and stu-
dents in the Departments of Computer Science and Human
Communication Science at the University of Sheffield. Stu-
dent participants were paid for their contribution. All spoke
English as their first language. All but three participants had
spent most of their lives in England and together encom-
passed a range of English accents. Two participants grew up
in Scotland and one was born in Jamaica. Ages ranged from
18 to 49 years �mean: 27.4 years�.

C. Collection

Audio-visual recordings were made in an IAC single-
walled acoustically isolated booth. Speech material was col-
lected from a single Bruel & Kjaer �B & K� type 4190 1

2
-in. microphone placed 30 cm in front of the talker. The
signal was preamplified by a B & K Nexus model 2690
conditioning amplifier prior to digitization at 50 kHz by a
Tucker-Davis Technologies System 3 RP2.1 processor. Col-
lection of speech material was under computer control. Sen-
tences were presented on a computer screen located outside
the booth, and talkers had 3 s to produce each sentence.
Talkers were instructed to speak in a natural style. To avoid
overly careful and drawn-out utterances, they were asked to
speak sufficiently quickly to fit into the 3-s time window.
Talkers were allowed to repeat the sentence if they felt it
necessary, either because of a mistake during production or if
part of the utterance fell outside the 3-s window. As an aid,
the captured waveform was displayed on the screen. In ad-
dition, talkers were asked to repeat the utterance if the cap-
tured waveform was judged by the software to be too quiet
or too loud. Prior to saving, signals were scaled so that the
maximum absolute value was unity, in order to optimize the
use of the quantized amplitude range. Scale factors were
stored to allow the normalization process to be reversed.

A simultaneous continuous video recording was made
on to MiniDV tape using a Canon XM2 video camcorder.

TABLE I. Sentence structure for the Grid corpus. Keywords are identified
with asterisks.

command color* preposition letter* digit* adverb

bin blue at A–Z 1–9, zero again
lay green by excluding W now

place red in please
set white with soon
The camera was set up to capture full frames at 25 frames/s.
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To avoid both noise and distraction from the video apparatus,
the camera was placed at eye level outside the booth, abut-
ting the booth window. Light sources were arranged to pro-
duce uniform illumination across the face, and the subject
was seated in front of a plain blue background. To ease tem-
poral alignment of the audio and visual signals, the camera
took its audio input from the high-quality audio signal pro-
vided by the microphone in the booth.

Although talkers were allowed to repeat an utterance if
they misread the prompt, they occasionally made errors with-
out realizing they had done so. A semi-automatic screening
procedure was employed to locate errors in the corpus. The
screening process used an ASR system based on talker-
dependent, whole-word hidden Markov models �HMM�,
trained separately for each talker. A “jack-knife” training
procedure was used in which 80% of the talker’s utterances
were used for training and the remaining 20% recognized.
This procedure was performed five times with a different
subset of utterances so that the subset recognized was inde-
pendent of the training set on each occasion. The ASR sys-
tem produced word-level transcripts for each utterance, and
errors were flagged if the recognition output differed from
the sentence the talker was meant to have read. On average,
57 out of 1000 utterances were flagged per talker. Flagged
utterances were checked by a listener and any sentences with
errors were marked for re-recording. Talkers were recalled to
perform the re-recording session, during which time their
utterances were monitored over headphones. Talkers were
asked to repeat any incorrectly produced utterances. In all,
640 utterances �an average of 19 per talker or 1.9% of the
corpus� were re-recorded.

While the screening process guaranteed that many of the
errors in the corpus were corrected, it is possible that some
errors were not detected. For a spoken sentence containing
an error to appear correct, the recognition system must have
made a complementary error �i.e., an error which corrects the
error made by the talker�. However, since the error rates of
both the talkers and recognizer are very low, the conjunction
of complementary errors is extremely unlikely. Informal hu-
man screening of a subset of utterances led to an estimate of
an error rate of not more than 0.1% �i.e., one error per 1000
utterances�. Most of the errors detected involved mispro-
duced filler items, so the number of sentences containing
misproduced keywords is smaller still.

D. Postprocessing

1. Audio

Prior to further processing, audio signals were down-
sampled to 25 kHz using the MATLAB resample routine. A
subset of 136 utterances �four randomly chosen from each
talker� was used to estimate the peak S/N according to the
ITU P.56 standard �ITU-T, 1993�. The peak S/N varied
across talkers from 44 to 58 dB �mean=51 dB, s.d.=3.6 dB�.

The talker-dependent HMM-based ASR systems used in
the screening of speaker errors were employed to estimate
the alignment between the word-level transcription and the
utterance. In addition, phone-level transcriptions of each ut-
terance were produced by forced alignment using the HVITE
program in the HTK hidden Markov model toolkit �Young et
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al., 1999�. Pronunciations were taken from the British En-
glish Example Pronunciation dictionary �BEEP1�. To boot-
strap the initial set of HMMs, 60 sentences from one of the
speakers were manually transcribed at the phone level.

2. Video

Unlike the audio collection, which was computer-
controlled, the video data were collected continuously
throughout the recording session, and thus contained both
genuine Grid utterances as well as false starts, incorrect ut-
terances, and other material. Consequently, it was necessary
to extract video segments corresponding to the final end-
pointed audio recordings. Utterance segments were first lo-
cated approximately using a timestamp recorded by the soft-
ware controlling the audio recording session. A precise
location was then found by searching in this region for the
3-s period of the video file that best correlated with the 3 s of
high-quality audio captured by the TDT processor. Correla-
tions were performed using the smoothed energy envelope of
the signals. Once the audio was precisely located, the corre-
sponding 75-frame �i.e., 3-s� segment of video was ex-
tracted. The high-quality 50-kHz audio captured by the TDT
processor was resampled to 44.1 kHz and used to replace the
audio track of the video segment.

The DV format video was converted to MPEG-1 format
using FFMPEG.2 Two compression rates were used to produce
both high and moderate quality versions of the video data.
The high-quality video employed a bandwidth of 6 Mbits
per s �comparable to DVD quality�, while the moderate qual-
ity version used a bandwidth of 600 Kbits per s �a quality
intermediate between a typical business-oriented videocon-
ferencing system and VHS video�. In both cases, the audio
bit rate was set to 256 kbits per s.

III. AUDIO INTELLIGIBILITY TESTS

Twenty listeners with normal hearing heard independent
sets of 100 sentences drawn at random from the corpus. All
speech material had initial and trailing silence removed prior
to presentation using utterance endpoints derived from the
word alignments. Utterances were scaled to produce a pre-
sentation level of approximately 68 dB SPL and were pre-
sented diotically over Sennheiser HD250 headphones in the
IAC booth. Listeners were asked to identify the color, letter,
and digit spoken and entered their results using a conven-
tional computer keyboard in which four of the nonletter/digit
keys were marked with colored stickers. Those keys repre-
senting colors were activated immediately following the on-
set of each utterance. As soon as a color key was pressed, the
25 relevant letter keys were enabled, followed by the 10 digit
keys. This approach allowed for rapid and accurate data en-
try: most listeners were able to identify a block of 100 utter-
ances in 5–7 min. Listeners were familiarized with the
stimuli and the task by identifying an independent practice
set of 100 sentences prior to the main set.

Figure 1 �triangles� shows the mean scores and their
standard errors across listeners. Unsurprisingly, fewer errors
were made for colors �0.25% of the 2000 sentences� than for

digits �0.7%� or letters �0.95%�. At least one error occurred
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in 1.85% �37 out of 2000� of sentences. These low error rates
suggest that the speech material collected was of high intel-
ligibility overall.

Insufficient errors were reported using clean speech ma-
terial to allow a more detailed inspection of the intelligibility
of individual keywords or talkers. To support such an analy-
sis, the same 20 listeners heard three further independent sets
of 100 utterances mixed with speech-shaped noise whose
spectrum matched the long-term spectrum of the Grid corpus
at three signal-to-noise ratios: 6, 4, and 2 dB, producing a
total of 6000 responses. Figure 1 �circles� shows error rates
for colors �0.7%�, digits �1.6%�, letters �5.2%�, and wholly
correct sentences �7.1%�. Figure 2 depicts the distribution of
errors by keyword and across talkers. While the color and
number distributions are reasonably flat, certain letters are
recognized significantly less well than others. Inspection of
letter confusion matrices revealed that most of the /v/ errors
were caused by misidentification as /b/, while /m/ and /n/
tokens were confused with each other.

A range of identification rates �defined as the percentage
of utterances in which at least one keyword was misidenti-
fied� across the 34 contributing talkers was observed. In par-
ticular, listeners misidentified keywords in utterances by
talkers 1 �19.8%�, 20 �16.2%�, and 33 �15.6%�, while fewer
than 2% of sentences spoken by talker 7 were misidentified
by this listener group. However, most talkers produced errors
rates of around 5%.

IV. SUMMARY

Grid, a large multitalker audio-visual sentence corpus,
has been collected to support joint computational-behavioral
studies in speech perception. Audio-only intelligibility tests
suggest that the speech material is easily identified in quiet
and low-noise conditions. Further tests of visual and audio-
visual intelligibility are planned. The complete corpus and
transcriptions are freely available for research use at the
website �http://www.dcs.shef.ac.uk/spandh/gridcorpus�.

FIG. 1. Mean error rates across listeners for sentences, colors, digits, and
letters. A sentence contained an error if one or more keywords were incor-
rectly identified. Triangles: clean sentence material; circles: sentences in
speech-shaped noise. Error bars denote +/−1 standard errors.
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